Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available February 20, 2026
-
Abstract We present the first results of the holographic beam-mapping program for the Canadian Hydrogen Intensity Mapping Experiment (CHIME). We describe the implementation of a holographic technique as adapted for CHIME, and introduce the processing pipeline which prepares the raw holographic timestreams for analysis of beam features. We use data from six bright sources across the full 400–800 MHz observing band of CHIME to provide measurements of the copolar and cross-polar beam response in both amplitude and phase for all 1024 dual-polarized feeds in the array. In addition, we present comparisons with independent probes of the CHIME beam, which indicate the presence of polarized beam leakage. Holographic measurements of the beam have already been applied in science with CHIME, e.g., in estimating the detection significance of far-sidelobe fast radio bursts, and in validating the beam models used for CHIME’s first detections of 21 cm emission (in cross-correlation with measurements of large-scale structure from galaxy surveys and the Lyαforest). Measurements presented in this paper, and future holographic results, will provide a unique data set to characterize the CHIME beam and improve the experiment’s prospects for a detection of the baryon acoustic oscillation signal.more » « less
-
null (Ed.)To reproduce a Digital Twin (DT) of a data center (DC), input data is required which is collected through site surveys. Data collection is an important step since accurate representation of a DC depends on capturing the necessary detail for various model fidelity levels of each DC component. However, guidance is lacking in this regard as to which components within the DC are crucial to achieve the level of accuracy desired for the computational model. And determining the input values of the component object parameters is an exercise in engineering judgement during site survey. Sensitivity analysis can be an effective methodology to determine how the level of simplification in component models can affect the model accuracy.In this study, a calibrated raised-floor DC model is used to study the sensitivity of a DC component's representation to the DC model accuracy. Commercial CFD tool, 6SigmaDC Room is used for modeling and simulation. A total of 8 DC components are considered and eventually ranked on the basis of time and effort required to collect model input data. For parametrized component object, the object's full range of input parameter values are considered, and simulations run. The results are compared with the baseline calibrated model to understand the trade-off between survey effort/cost and model accuracy. For the calibrated DC model and of the 8 components considered, it was observed that the chilled water piping branches, data cables and the cable penetration seal (found within cabinets) have considerable influence on the tile flow rate prediction accuracy.more » « less
-
null (Ed.)Abstract We introduce DAYENU, a linear, spectral filter for HI intensity mapping that achieves the desirable foreground mitigation and error minimization properties of inverse co-variance weighting with minimal modeling of the underlying data. Beyond 21 cm power-spectrum estimation, our filter is suitable for any analysis where high dynamic-range removal of spectrally smooth foregrounds in irregularly (or regularly) sampled data is required, something required by many other intensity mapping techniques. Our filtering matrix is diagonalized by Discrete Prolate Spheroidal Sequences which are an optimal basis to model band-limited foregrounds in 21 cm intensity mapping experiments in the sense that they maximally concentrate power within a finite region of Fourier space. We show that DAYENU enables the access of large-scale line-of-sight modes that are inaccessible to tapered DFT estimators. Since these modes have the largest SNRs, DAYENU significantly increases the sensitivity of 21 cm analyses over tapered Fourier transforms. Slight modifications allow us to use DAYENU as a linear replacement for iterative delay CLEANing (DAYENUREST). We refer readers to the Code section at the end of this paper for links to examples and code.more » « less
-
Abstract We present a detection of 21 cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1σ(LRG), 5.7σ(ELG), and 11.1σ(QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi), defined as , where ΩHiis the cosmic abundance of Hi,bHiis the linear bias of Hi, and 〈fμ2〉 = 0.552 encodes the effect of redshift-space distortions at linear order. We find for LRGs (z= 0.84), for ELGs (z= 0.96), and for QSOs (z= 1.20), with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias Δv= − 66 ± 20 km s−1for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin atz= 1.30 producing the highest-redshift 21 cm intensity mapping measurement thus far.more » « less
-
Abstract This paper presents the design and deployment of the Hydrogen Epoch of Reionization Array (HERA) phase II system. HERA is designed as a staged experiment targeting 21 cm emission measurements of the Epoch of Reionization. First results from the phase I array are published as of early 2022, and deployment of the phase II system is nearing completion. We describe the design of the phase II system and discuss progress on commissioning and future upgrades. As HERA is a designated Square Kilometre Array pathfinder instrument, we also show a number of “case studies” that investigate systematics seen while commissioning the phase II system, which may be of use in the design and operation of future arrays. Common pathologies are likely to manifest in similar ways across instruments, and many of these sources of contamination can be mitigated once the source is identified.more » « less
An official website of the United States government

Full Text Available